

The Lipid Profile of Meat:

Composition, Influencing Factors, Nutritional Significance, and Health Implications

Patel Jainam Nanubhai*, Rishi Kumar, Varun Kumar, Rathod Rohit Kailasrao, Shristi Patel, Judy Lalthanmawii

Division of Livestock Products Technology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India, 243122

*Corresponding author Name & Email: Patel Jainam Nanubhai & jainam.shiv@gmail.com DOI:10.5281/Vettoday.16785419

Abstract

Lipids in meat play vital roles in energy storage, cell structure, and hormone synthesis. This review highlights the major lipid types triglycerides, phospholipids, and sterols and their varying fatty acid profiles across meat species. Factors such as genetics, diet, and animal age influence fat composition, affecting health outcomes. While essential fatty acids and bioactive lipids like CLA offer benefits, high saturated fat intake and harmful oxidation products from cooking raise concerns. Choosing lean cuts, healthier cooking methods, and balancing meat with plant-based foods can help optimize the nutritional value of meat lipids while minimizing health risks.

Key words: Meat lipids; Fatty acid composition; Saturated fat; CLA; Omega-3; Lipid oxidation; Meat quality; Cooking methods; Nutritional value; Health implications

1. Introduction

Lipids are water-insoluble, energy-rich organic compounds essential for life. They play key roles in energy storage, cell membrane structure, hormone synthesis, and nutrient absorption. Far beyond being just a calorie source, lipids support vital functions like cellular signaling, vitamin absorption, and maintaining membrane integrity, making them crucial for overall health.

- 1.1. Primary Lipid Types in Meat Meat lipids include triglycerides, phospholipids, and sterols:
 - Triglycerides (~95%) are the main fat type in meat, contributing to energy, flavor, and texture but may raise health risks when consumed in excess.

- **Phospholipids** (~2%) are key for cell membranes and fat transport due to their water- and fat-soluble nature.
- **Sterols**, mainly **cholesterol**, are vital for hormone and vitamin D synthesis but can impact heart health if overconsumed.

1.2. Fatty acid Composition across Different Meat Types

The fatty acid profile of meat significantly affects its nutritional value, comprising saturated (SFA), monounsaturated (MUFA), polyunsaturated (PUFA), and trans-isomer fatty acids (TIFA), each with distinct health impacts.

1.2.1. Saturated Fatty acids (SFA): SFAs like myristic, palmitic, and stearic acids are

prevalent in meat and raise LDL ("bad") cholesterol, increasing heart disease risk. Health guidelines advise limiting SFAs to <10% of daily calories. However, effects vary by specific SFA type, so moderation and portion control are key.

1.2.2. Monounsaturated Fatty acids (MUFA): MUFAs, abundant in red meat and dairy, help maintain healthy cholesterol levels. Their presence suggests meat also offers beneficial fats, not just harmful ones.

1.2.3. Polyunsaturated Fatty acids (PUFA):

- Omega-3s (ALA, EPA, DHA): Support heart, brain, and eye health. Meat is generally low in omega-3s except for grass-fed lamb, which provides slightly more than grain-fed but far less than fatty fish.
- Omega-6s (LA, AA): Found in animal fat, provide energy but can promote inflammation if not balanced with omega-3s. Western diets often have a high omega-6/omega-3 ratio (15:1+), increasing chronic disease risk.
- **1.2.4.** Trans-Isomer Fatty acids (TIFA): Natural TIFAs like elaidic acid and CLA are present in ruminant meat (e.g., lamb, beef) but not in poultry. Unlike harmful industrial trans fats, the health effects of natural TIFAs are less certain and may not be as harmful.

2. Comparative Analysis of Lipid Profiles in Meat

Meat from different animal species varies widely in its fat composition, influencing its health impact:

- Saturated Fat (SFA): Highest in beef (58.13%) and lamb (51.99%), moderate in pork (43.54%) and horse (43.77%), and lowest in turkey (40.40%).
- Monounsaturated Fat (MUFA): Highest in pork (36.59%), followed by beef (30.55%), turkey (28.63%), lamb (23.55%), and horse (22.97%).
- Polyunsaturated Fat (PUFA): Highest in horse meat (22.17%), then turkey (12.25%), pork (10.86%), beef (7.25%), and Jamb (6.75%)

- PUFA/SFA Ratio (ideal: 0.2–0.4): Favorable in pork (0.25) and turkey (0.30); horse meat (0.51) exceeds optimal, while lamb (0.13) and beef (0.12) are less balanced.
- Omega-6/Omega-3 Ratio (ideal: 3:1–10:1):

Best in horse (4.45) and beef (4.15) for therapeutic use, lamb (6.14) and pork (10.76) are acceptable, turkey (25.82) is least favorable.

Fat content also varies by cut: A trimmed beef eye of round (3oz) has 2.4g saturated fat, while untrimmed beef ribs have 10g. Leaner, skinless cuts offer healthier profiles, stressing the need for specific meat choices over generalizations for better dietary planning.

3. Factors Influencing Meat's Lipid Profile

Meat's lipid profile is shaped by genetics, diet, and animal characteristics:

- 3.1 Genetic Factors: Species and Breed Fat synthesis, storage, and distribution vary by species and breed. For example, Wagyu cattle have high intramuscular fat (marbling), while Angus cattle deposit more subcutaneous fat. Poultry stores fat around the abdomen or wings. These genetic traits affect both meat quality and fat composition, making selective breeding a tool to improve nutritional value.
- 3.2 Dietary Influences and Feeding Practices Diet heavily influences meat fat, especially in monogastric (like poultry), whose meat fat reflects their feed. Ruminants (like cattle) convert dietary unsaturated fats into saturated fats via rumen biohydrogenation, producing CLA.
 - Grass-fed animals have higher omega-3 levels than grain-fed ones.
 - High-energy diets boost marbling in cattle; low-energy diets reduce fat in poultry. Feeding practices thus play a key role in determining meat's nutritional quality.

3.3 Animal Age and Gender Older animals accumulate more fat, altering meat's fatty acid profile. Gender also affects fat distribution and meat texture due to hormonal differences, with males often having leaner, more muscular meat.

These factors subtly but consistently influence nutritional and sensory properties.

- 4. Nutritional Significance and Health Implications of Meat Lipids
- 4.1. Essential Fatty Acids in Health Meat provides essential omega-3 and omega-6 fatty acids vital for cell membrane function, brain health, and inflammation control. Though meat contains less omega-3 than fish, it still supports critical functions like vision, neural development, and immune response, highlighting the importance of fat quality over quantity.
- **4.2. Bioactive Lipids:** CLA and Others Ruminant meat contains Conjugated Linoleic Acid (CLA), linked to possible anti-obesity, antidiabetic, and anti-inflammatory effects, though human studies show mixed results. Other bioactive fats in meat, like MCTs and sphingolipids, also support metabolism and reduce inflammation, adding complexity to meat's health profile.
- 4.3. Cardiovascular Impact Meat's saturated fat content can raise LDL cholesterol, increasing CVD risk. However, RCTs show mixed outcomes, with the health effects of red meat largely depending on dietary context—benefits are clearer when red meat is replaced by plant proteins rather than refined carbs.
- **4.4. Inflammation and Oxidative Stress** Animal-rich diets may elevate systemic inflammation via mechanisms like:
 - Endotoxins and oxidized LDL activating inflammatory pathways,
 - Lipotoxicity impairing blood vessel function,
 - TMAO production from meat-derived nutrients (choline, carnitine), linked to atherosclerosis.

- 4.5. Balancing Benefits and Risks While meat offers essential fatty acids and bioactive lipids, excessive intake—especially of processed and high-fat meats—can elevate health risks. Balanced diets emphasizing lean, grass-fed meats and more plant-based foods are recommended to optimize benefits while minimizing harm.
- 5. Effect of Cooking and Dietary Recommendations for Meat Lipids
- **5.1.** Effect of Cooking on Meat Lipids Cooking alters meat's fat, cholesterol, and forms harmful oxidation products:
 - Fat and Cholesterol Changes: Cooking often increases fat/cholesterol on a wet basis due to water loss but actually reduces them on a dry basis due to fat drip and oxidation. Frying and barbecuing reduce fat/cholesterol on a dry basis, while liver may show increases on a wet basis due to different tissue properties.
 - Lipid Oxidation Products (COPs): Cooking can generate harmful compounds like COPs. Microwaving increases lipid peroxidation and free fatty acids most, while boiling and pan-frying produce fewer COPs and are safer.
 - Comparison of Methods:

 No universal best method exists—method choice should match dietary goals (e.g., reducing fat vs. minimizing oxidation).

 Microwaving is least favorable, while boiling/pan-frying are better for preserving lipid quality.

5.2. Dietary Guidelines for Healthy Meat Consumption

- Saturated Fat Limits: Limit saturated fat to <10% (or <6% per AHA) of daily calories. Replace with unsaturated fats (e.g., olive oil, nuts, fish) to lower LDL cholesterol and heart disease risk.
- Smart Meat Choices:
 - Choose lean cuts, skinless poultry, and low-fat ground meat.
 - o Prefer grass-fed or pasture-raised

- meat for slightly better omega-3 content.
- Use plant-based oils for cooking.
- Include fatty fish and plant proteins (e.g., beans, lentils).
- Limit processed meats, high in saturated fat and additives.

6. Conclusion

Meat lipids offer essential nutrients but also pose health risks due to saturated fat and oxidation products. Their profile varies by species, diet, age, and cooking method. Adopting lean selections, healthier cooking methods, and plant-based substitutions allows meat to be part of a balanced diet without compromising health.

7. Reference

- Wood, J.D., Enser, M., Fisher, A.V., Nute, G.R., Sheard, P.R., Richardson, R.I., Hughes, S.I., Whittington, F.M. (2008). "Fat deposition, fatty acid composition and meat quality: A review." *Meat Science*, 78(4): 343–358. https://doi.org/10.1016/j.meatsci.2007.07.019
- De Smet, S., Raes, K., Demeyer, D. (2004). "Meat fatty acid composition as affected by fatness and genetic factors: a review." *Animal Research*, **53**(2): 81–98. https://doi.org/10.1051/animres:200400 3
- Williams, C.M. (2000). "Dietary fatty acids and human health." *Annales de Zootechnie*, **49**(3): 165–180. https://doi.org/10.1051/animres:200011
- Daley, C.A., Abbott, A., Doyle, P.S., Nader, G.A., Larson, S. (2010). "A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef." *Nutrition Journal*, 9: 10. https://doi.org/10.1186/1475-2891-9-10

Sacks, F.M., Lichtenstein, A.H., Wu, J.H.Y., Appel, L.J., Creager, M.A., Kris-Etherton, P.M., Miller, M., Rimm, E.B., Rudel, L.L., Robinson, J.G., Stone, N.J., Van Horn, L.V. (2017). "Dietary fats and cardiovascular disease: A presidential advisory from the American Heart Association." *Circulation*, **136**(3): e1–e23.

https://doi.org/10.1161/CIR.000000000 0000510