

Harnessing the potential of Ethno-veterinary medicine in treatment of animals

1*Simran Kaur and ²Amandeep Singh

¹Ph.D. Scholar, Department of Animal Genetics and Breeding

²Assistant Professor, Department of Veterinary Anatomy Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar-125004, Haryana DOI:10.5281/Vettoday.15538758

Introduction

Livestock is a reliable source of revenue for farmers due to the seasonal nature of crop production. India has emerged as the world's leading milk producer, with a current production of 239 million metric tons (MMT). They must, therefore, be safeguarded against disease. There are medical facilities, but they are expensive and have drawbacks too. Concerns are rising regarding the presence of medication residues in milk and milk products, as well as the rise of drug-resistant microorganisms and associated health hazards from indiscriminate use. Ethno-veterinary medicine (EVM) is a significant substitute for lowering reliance on antibiotics and other synthetic medications.

Ethnoveterinary refers to the traditional knowledge of people's beliefs about using plants and their products to treat animals. Key elements of EVM include: using natural materials, relying on

natural forces, and manipulating or doing surgery. Plants are the most commonly used ingredients in ethnomedicine. Plant elements such as leaves, bark, roots, fruits, flowers, and seeds are commonly utilized in medicine (Pradhan and Mishra, 2018). In India, popular herbs for EVM include *Aloe vera*, Curcuma longa, Azadirachta indica, Murraya koenigii, Cissus quadrangularis, Mimosa pudica, Lantana camara. Acorus Acalvpha indica. calamus, Leucas linifolia, Adhatoda vasica, Moringa oleifera, Gentiana chirayita, Ocimum sp., Ocimum basilicum, Papaver somniferum, Piper betle, Lawsonia inermis and Tamarindus indica. Spices typically used include cumin, fenugreek, pepper, coriander, bay leaves, asafetida, and chilly. Commonly utilized vegetables and fruits include garlic, ginger, onion, lemon, bitter gourd, radish, lady finger, coconut, and mustard. Additional ingredients include limestone, coconut oil, sesame/gingelly oil, salt, jaggery, ghee, and butter (Nair et al., 2017; Rath et al., 2020).

Table 1. Examples of common ethnoveterinary medicine employed for the treatment of diseases in livestock:

S.No.	Disease	Part used	Mode of administration	Reference
1.	Wound	Bark of	About 250 g of <i>Acacia nilotica</i>	Verma,
		Azadirachta indica	and 500 g of <i>Azadirachta</i>	2014
			indica bark are grounded and	
			combined with water. The	
			resulting paste is used over	
			wounds till complete recovery.	
2.	Diarrhoea/Dysentery	Fruit pulp extract	Drenching about 1 kg fruit	Verma et
		of Aegle marmelos	pulp extract of Aegle marmelos	al., 2023
		and mango seed	and mango seed kernel for 2-3	
		kernel; leaf paste of	days. About 100-200 g leaf	
		Moringa oleifera	paste of <i>Moringa oleifera</i> is	
			given twice daily for 3 to 5	
			days to cattle.	
3.	Indigestion	Mangifera indica	In the case of indigestion, the	Verma,
		fruit	paste is made from 50 to 100 g	2014

			of fruit and fed to cattle with	
			wheat bread once or twice a	
			day for seven days.	
4.	To enhance lactation	Grain of Oryza	Rice grains are boiled together	Verma,
		sativa	with black gram, black salts,	2014
			and black pepper. The mixture	
			is administered once or twice a	
			day for one month to improve	
			lactation in cattle.	
5.	Fever	Bark of Gulmohar	Delonix regia Linn.	Verma et
		and garlic	(Gulmohar): For fever therapy,	al., 2023
			an ethanolic extract of the bark	
			combined with black pepper	
			and garlic is administered	
			twice daily till healed.	

Conclusion

EVM would prevent the issue of antimicrobial resistance (AMR) and aid with the decrease of antibiotic and other chemical drug residues in animal products. In the management of animals, EVP can be a useful substitute for synthetic drugs and antibiotics. EVM will increase livestock wellbeing and produce dairy products that are safer and more affordable. In the long run, this strategy will improve both human and environmental well-being.

References:

Pradhan, S. and Mishra, S., 2018. Ethnoveterinary practice: An alternative treatment approach in contemporary India. *The Pharma Innovation J.*, 7(9): 362-365.

Rath, D., Sharma, G.K. and Joshi, Y.C., 2020. Ethnoveterinary medicine for responsible dairying. *Indian J. Dairy Sci.*, 73(5).

Nair, B., Punniamurthy, N. and Kumar, S.K., 2017. Ethno-veterinary practices for animal health and the associated Medicinal Plants from 24 Locations in 10 States of India. Res. J. Vet. Sci, 3: 16-25.

Verma, R.K., 2014. An ethnobotanical study of plants used for the treatment of livestock diseases in Tikamgarh District of Bundelkhand, Central India. *Asian Pac. J. Trop. Biomed.*, 4: S460-S467.

Verma, N., Agarwal, N. and Misra, L., 2023. Review of some diseases of dairy animals and treatment by ethnoveterinary medicines. *Adv. Med. Plant Res.*, 9-32.

