

Precision Livestock Genome Editing in India: From CRISPR Innovation to Sustainable Animal Production

**Dr Raakib Rasool Janbaz¹, Dr Mohsin Ayoub Mir¹, Dr Rakesh Nehra²,
Dr Pallavi Chaudhary²**

¹Assistant Professor, Department of AGB, Sri Ganganagar Veterinary College, Tantia University- Rajasthan 335002.

¹Division of Animal Genetics and Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Alusteng, Shuhama-190006, UT of Jammu and Kashmir, India.

²Assistant Professor, Department of AGB, Sri Ganganagar Veterinary College, Tantia University- Rajasthan 335002.

Corresponding Author: Dr Raakib Rasool Janbaz

Email: raakib98@gmail.com

Phone: +91-9596508996

DOI:10.5281/Vettoday.17991109

Abstract

Genome editing technologies particularly CRISPR-Cas systems are revolutionizing livestock improvement by enabling precise modifications to the genetic code of animals. This review explores the evolution of genome editing tools from early protein-based platforms such as ZFNs and TALENs to the current RNA-guided CRISPR-Cas systems which offer unprecedented precision, efficiency and affordability. We highlight key applications in disease resistance, productivity enhancement and animal welfare, with a specific focus on Indian livestock species such as Murrah buffalo, Deccani sheep and indigenous goat breeds. Ongoing research initiatives at Indian institutions including SKUAST-Kashmir, NDRI, CIRB and IVRI are tailoring CRISPR technologies to address local challenges such as mastitis, heat stress and low productivity. The regulatory landscape in India is also discussed alongside emerging tools such as base editing, prime editing and rumen microbiome engineering. This paper underscores the transformative potential of genome editing in building climate-resilient, productive and ethically managed livestock systems, while emphasizing the evolving role of veterinarians as genetic advisors and science translators in this new era.

Keywords: Genome editing, CRISPR-Cas9, livestock, India, disease resistance, productivity, animal welfare, genetics

Timeline of Genome Editing Evolution

- **1996:** Mega nucleases discovered
- **2002:** ZFNs developed
- **2010:** TALENs introduced
- **2012:** CRISPR-Cas9 breakthrough
- **2015:** First gene-edited livestock (polled cattle)
- **2017:** Base editing developed
- **2019:** Prime editing announced
- **2022:** Indian DBT guidelines released
- **2023–25:** Next-generation tools (epigenome/rumen editing)

Introduction

Forget breeding think editing. In labs and research stations across India, scientists are no longer just selecting the best animals; they're rewriting their genetic code. This isn't futuristic speculation it's the reality of genome editing: the ability to make precise, targeted changes to an organism's DNA correcting errors, inserting beneficial traits or disabling undesirable ones at specific locations in the genome (Jinek et al., 2012). Over less than a decade, the toolkit has evolved from molecular scissors to genetic scalpels. At the forefront is CRISPR-Cas a system so transformative it's reshaping what's possible in animal health, welfare and productivity from tackling mastitis in Murrah buffalo to building heat tolerance in Deccani sheep (Zhang et al., 2014).

India's Livestock Context: The Need for Innovation

India is home to the world's largest livestock population, with over **535 million animals** including 193 million cattle, 109 million buffaloes, 148 million goats, and 74 million sheep (20th Livestock Census, 2019). Despite this productivity remains suboptimal due to endemic diseases, heat stress and nutritional challenges. Genome editing offers

a targeted approach to addressing these constraints without increasing resource inputs.

The Evolution of Editing: From Protein Puzzles to RNA-Guided Precision

First-Generation Tools: Custom-Built and Complex

Tool	How It Works	Key Strength	Major Limitation	Examples
Mega nucleases	Natural enzymes recognize long DNA sequences	High specificity	Nearly impossible to reprogram	Limited use in livestock
ZFNs	Zinc finger proteins + FokI nuclease fusion	First programmable editor	Expensive, complex design, off-target effects	Early gene knockout models
TALENs	Bacterial TALE proteins + FokI nuclease	Easier design, high precision	Costly, slow protein engineering	Created first polled (hornless) cattle (Carlson et al., 2012)

These tools laid the groundwork but were like crafting custom surgical instruments for every operation effective but not scalable.

CRISPR-Cas: The Game Changer That Democratized Gene Editing

Then came **CRISPR-Cas9**- a system borrowed from bacteria's immune system. Simpler, faster and far cheaper, CRISPR turned genome editing from a specialist's craft into a widely usable tool (Doudna & Charpentier, 2014).

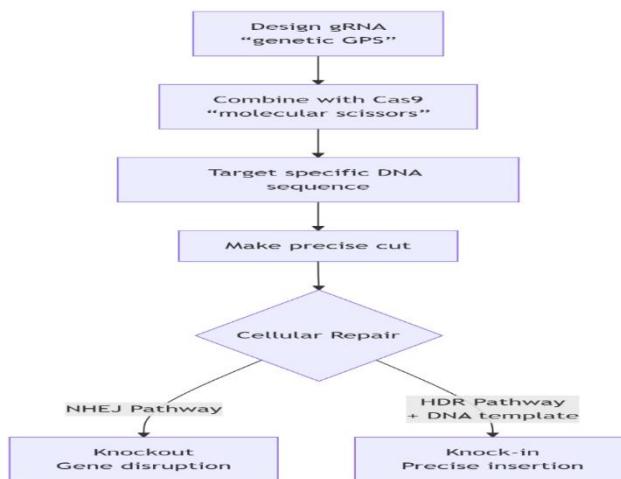
How It Works: GPS-Guided Molecular Scissors

Why CRISPR Won the Race: A Comparative Advantage

- Cost: 90% cheaper than ZFNs or TALENs (Gaj et al., 2013)
- Speed: Design and testing in days versus months
- Multiplexing: Edit multiple genes simultaneously (Cong et al., 2013)
- Versatility: Works across all livestock species

It's the difference between hand carving code and running "find-and-replace" across the genome.

CRISPR in Action: Real-World Applications [DISEASE → PRODUCTIVITY → WELFARE]


1. Disease Resistance: Building Genetic Immunity

- Cattle: *NRAMP1* edits confer resistance to bovine tuberculosis (Gao et al., 2017)
- Pigs: *CD163* knockout creates complete PRRS resistance (Burkard et al., 2017)
- Goats: *PrP* gene disruption prevents scrapie like diseases (Zhang et al., 2017)

2. Enhanced Productivity: More Milk, Meat and Wool

- Muscle Development: *MSTN* (myostatin) knockout in sheep, goats and pigs leads to enhanced muscularity reminiscent of double-muscled Belgian Blue cattle (Wang et al., 2015)
- Fiber Quality: *FGF5* disruption produces longer, finer wool and cashmere (Wang et al., 2016)

- Milk Composition: *Beta-*

lactoglobulin knockout creates hypoallergenic milk (Liu et al., 2020)

3. Animal Welfare: Editing for a Better Life

- Polled Cattle: Introducing hornlessness eliminates painful dehorning (Carlson et al., 2016)
- Thermotolerance: *UCP1* insertion helps pigs better regulate body temperature (Zheng et al., 2017)

The Indian Chapter: CRISPR Tailored to Local Needs

Leading Projects Across Institutions

Institution	Focus Project	Target Trait
SKUAST-Kashmir	"Double-muscled" small ruminants	Enhanced meat yield
NDRI, Karnal	<i>MSTN</i> -edited buffalo bulls	Improved muscularity
CIRB, Hisar	Lysozyme gene integration	Mastitis resistance
IVRI	CRISPR-edited cell lines	Improved FMD vaccine production

Why This Matters for Indian Agriculture:

- Climate Resilience: Editing for heat and drought tolerance critical as **>30%** of Indian livestock face heat stress (Kumar et al., 2020)
- Disease Management: Reducing antibiotic dependence mastitis alone costs Indian dairy ₹10,000 crore annually
- Farmer Economics: Boosting productivity without proportional cost increases potential to increase milk yield by 15–20% through genetic improvements

Regulatory Landscape in India

India is developing a science-based regulatory framework for genome-edited organisms. The Department of Biotechnology (DBT) and Indian Council of Agricultural Research (ICAR) are working on guidelines that distinguish between gene-edited (no foreign DNA) and transgenic organisms, potentially streamlining approval for precision edited livestock (Department of Biotechnology, 2022).

Challenges and Ethical Considerations

While promising, genome editing in livestock presents significant challenges that must be addressed responsibly:

Scientific & Technical Challenges:

- Off-target effects: Unintended edits in non-target genomic regions
- Mosaicism: Incomplete editing in early embryos
- Delivery efficiency: Variable success rates across species
- Long-term health impacts: Unknown effects over multiple generations

Ethical & Social Considerations:

- Animal welfare: Potential for unintended suffering from genetic modifications

- Biodiversity risks: Genetic homogenization of livestock populations
- Socio-economic equity: Access limited to large farms, widening the rich-poor gap
- Consumer acceptance: Public perception and labeling concerns
- Cultural/religious sensitivities: Particularly relevant in India's diverse society

Regulatory & Governance Gaps:

- Ambiguous policies: Overlap between biotechnology, agriculture and environmental regulations
- Monitoring challenges: Tracking edited animals in informal supply chains
- International harmonization: Export restrictions to non-GMO preferring countries

The Way Forward:

- Precautionary principle: Step-wise testing and monitoring
- Stakeholder engagement: Including farmers, consumers and ethicists in dialogue
- Transparent labeling: Clear communication about editing status
- Capacity building: Training veterinarians and regulators in genomic technologies

What Comes Next: Beyond CRISPR-Cas9

Next-Generation Precision Tools

- Base Editing: Changes single DNA letters without double strand breaks (Gaudelli et al., 2017)
- Prime Editing: "Search and replace" with minimal errors (Anzalone et al., 2019)

- Epigenome Editing: Modifies gene expression without DNA changes (Hilton et al., 2015)
- Rumen Microbiome Editing: Enhancing feed efficiency and reducing methane (Min et al., 2019)

Implications for Veterinary Practice

As these technologies advance, veterinarians will evolve into:

- Genetic Advisors: Helping farmers navigate editing options
- Clinical Specialists: Managing health of genetically enhanced herds
- Welfare Advocates: Ensuring ethical application remains central
- Science Translators: Bridging cutting-edge research and practical farming

Conclusion: Editing the Future, responsibly: Genome editing, especially CRISPR-Cas, represents the most significant leap in animal science since domestication. For India with its vast livestock population and unique challenges, these tools offer a pathway to resilient, productive and humane agriculture. But with great power comes great responsibility. Success will depend on robust science, thoughtful regulation, transparent communication and unwavering commitment to animal welfare. The future of Indian livestock is being written in base pairs and veterinarians will be essential co-authors of that story.

References

Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., & Liu, D. R. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. *Nature*, 576(7785), 149–157.

Burkard, C., Lillico, S. G., Reid, E., Jackson, B., Mileham, A. J., Ait-Ali, T., Whitelaw, C. B. A., & Archibald, A. L. (2017). Precision engineering for PRRSV resistance in pigs: Macrophages from CD163-knockout pigs resist PRRSV infection. *Journal of Virology*, 91(14), e01715-17.

Carlson, D. F., Lancto, C. A., Zang, B., Kim, E.-S., Walton, M., Oldeschulte, D., Seabury, C., Sonstegard, T. S., & Fahrenkrug, S. C. (2016). Production of hornless dairy cattle from genome-edited cell lines. *Nature Biotechnology*, 34(5), 479–481.

Carlson, D. F., Tan, W., Lillico, S. G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D. F., Long, C. R., Whitelaw, C. B. A., & Fahrenkrug, S. C. (2012). Efficient TALEN-mediated gene knockout in livestock. *Proceedings of the National Academy of Sciences*, 109(43), 17382–17387.

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. *Science*, 339(6121), 819–823.

Department of Animal Husbandry and Dairying. (2019). *20th Livestock Census*. Ministry of Fisheries, Animal Husbandry and Dairying, Government of India.

Department of Biotechnology. (2022). *Guidelines for safety assessment of genome edited organisms*. Government of India.

Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. *Science*, 346(6213), 1258096.

Gaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for

genome engineering. *Trends in Biotechnology*, 31(7), 397–405.

Gao, Y., Wu, H., Wang, Y., Liu, X., Chen, L., Li, Q., Cui, C., Liu, X., Zhang, J., & Zhang, Y. (2017). Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. *Genome Biology*, 18(1), 13.

Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. *Nature*, 551(7681), 464–471.

Hilton, I. B., D'Ippolito, A. M., Vockley, C. M., Thakore, P. I., Crawford, G. E., Reddy, T. E., & Gersbach, C. A. (2015). Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. *Nature Biotechnology*, 33(5), 510–517.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science*, 337(6096), 816–821.

Kumar, S., Tait, R. G., & Kuehn, L. A. (2020). Genomic applications for heat tolerance in dairy cattle. *Animal Frontiers*, 10(2), 15–22.

Liu, X., Wang, Y., Tian, Y., Yu, Y., Gao, M., Hu, G., Su, F., Pan, S., Luo, Y., Guo, Z., Quan, F., & Zhang, Y. (2020). Generation of beta-lactoglobulin knockout goats using CRISPR/Cas9. *PLOS ONE*, 15(9), e0239867.

Min, B. R., Solaiman, S., & Gurung, N. (2019). Role of rumen microbiome in modulating methane emissions: A CRISPR perspective. *Journal of Animal Science*, 97(Suppl 3), 267.

Wang, X., Niu, Y., Zhou, J., Yu, H., Kou, Q., Lei, A., Zhao, X., Yan, H., Cai, B., Shen, Q., Zhou, S., Zhu, H., Zhou, G., Niu, W., Hua, J., Jiang, Y., Huang, X., Ma, B., & Chen, Y. (2016). CRISPR/Cas9-mediated MSTN disruption and FGF5 promotion improve wool production in sheep. *Scientific Reports*, 6, 30357.

Wang, X., Yu, H., Lei, A., Zhou, J., Zeng, W., Zhu, H., Dong, Z., Niu, Y., Shi, B., Cai, B., Liu, J., Huang, S., Yan, H., Zhao, X., Zhou, G., He, X., Chen, X., Yang, Y., Jiang, Y., ... Chen, Y. (2015). Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. *Scientific Reports*, 5, 13878.

Zhang, F., Wen, Y., & Guo, X. (2014). CRISPR/Cas9 for genome editing: Progress, implications and challenges. *Human Molecular Genetics*, 23(R1), R40–R46.

Zhang, Y., Wang, Y., Yulin, B., Hu, Y., Peng, Y., Tang, X., Ren, J., Zhang, Z., & Wu, R. (2017). CRISPR/Cas9-mediated PrP gene ablation in goats confers resistance to scrapie. *Virology Journal*, 14(1), 213.

Zheng, Q., Lin, J., Huang, J., Zhang, H., Zhang, R., Zhang, X., Cao, C., Hambly, C., Qin, G., Yao, J., Song, R., Jia, Q., Wang, X., Li, Y., Zhang, N., Piao, Z., Ye, R., Speakman, J. R., Wang, H., ... Li, W. (2017). Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs recovers thermogenic ability. *Cell Research*, 27(8), 1016–1019.